A Joint Variance Ratio Test based on the Wild Bootstrap

نویسنده

  • Jae H. Kim
چکیده

The variance ratio (VR) test has been widely used as a means of testing for the martingale hypothesis in financial time series. The conventional VR tests are asymptotic tests, which can exhibit deficient small sample properties. In this paper, a joint VR test based on the wild bootstrap is proposed. It is a small sample test which does not rely on asymptotic approximations. An extensive Monte Carlo experiment is conducted to evaluate and compare the small sample properties of alternative joint VR tests including the wild bootstrap version. It is found that the wild bootstrap test is the only test which shows desirable size properties under a wide range of data generation processes. It also shows excellent power properties for a variety of non-martingale alternatives including long memory time series. As an application, the martingale hypothesis in major exchange rates is tested using the wild bootstrap test.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Dependent Wild Bootstrap

We propose a new resampling procedure, the dependent wild bootstrap, for stationary time series. As a natural extension of the traditional wild bootstrap to time series setting, the dependent wild bootstrap offers a viable alternative to the existing block-based bootstrap methods, whose properties have been extensively studied over the last two decades. Unlike all of the block-based bootstrap m...

متن کامل

Bootstrap Restricted Likelihood Ratio Test for the Detection of Rare Variants

In this paper the detection of rare variants association with continuous phenotypes of interest is investigated via the likelihood-ratio based variance component test under the framework of linear mixed models. The hypothesis testing is challenging and nonstandard, since under the null the variance component is located on the boundary of its parameter space. In this situation the usual asymptot...

متن کامل

Detecting the Genomic Signature of Divergent Selection in Presence of Gene Flow

In this paper the detection of rare variants association with continuous phenotypes of interest is investigated via the likelihood-ratio based variance component test under the framework of linear mixed models. The hypothesis testing is challenging and nonstandard, since under the null the variance component is located on the boundary of its parameter space. In this situation the usual asymptot...

متن کامل

A versatile omnibus test for detecting mean and variance heterogeneity.

Recent research has revealed loci that display variance heterogeneity through various means such as biological disruption, linkage disequilibrium (LD), gene-by-gene (G × G), or gene-by-environment interaction. We propose a versatile likelihood ratio test that allows joint testing for mean and variance heterogeneity (LRT(MV)) or either effect alone (LRT(M) or LRT(V)) in the presence of covariate...

متن کامل

Comparison of bootstrap approaches for estimation of uncertainties of DTI parameters.

Bootstrap is an empirical non-parametric statistical technique based on data resampling that has been used to quantify uncertainties of diffusion tensor MRI (DTI) parameters, useful in tractography and in assessing DTI methods. The current bootstrap method (repetition bootstrap) used for DTI analysis performs resampling within the data sharing common diffusion gradients, requiring multiple acqu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004